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The report reviews currency exchange rate forecast issues. 

For this reason, corresponding time series have been 

studied based on which features of this type of series have 

been determined. Taking into account nature of these 

features, several models have been processed for currency 

exchange rate forecasting. Comparing the results of the 

models, the best model is selected and used for estimate  

currency exchange rate’s future movements.    
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Introduction 

Trading currency positions can be considered to be a financial instrument. In 

financial trading, one of the key tasks is to try to capture the movement of the 

underlying asset, which is usually known as volatility. The volatility is the 

conditional standard deviation of the underlying assets return (rt ) and 

denoted by .t  This volatility depends on the trading each day and some 

previous days [1]. As with other financial time series, one of the main 

characteristics of the volatility of currency exchange return is that it appears 

in clusters (see Figure 1, 2 and 3). The second is that the volatility changes 

over time and in most cases stays within some spans. In other words, this kind 

of data suffers from heteroskedasticity.  

In recent years, especially with regard to financial applications, ARCH [2] and 

Generalize ARCH (GARCH) models have received ample attention for dealing 

with heteroskedasticity [3].  The aim in this paper is to assess empirically the 

adequacy of this class of models in currency exchange return volatility 

forecasting. To accomplish this, we consider three currencies (USD, EUR and 

Georgian LARI) exchange rate sequences and evaluate how well the 

Generalized Autoregressive Conditional Heteroskedasticity (GARCH) model 

replicates the empirical nature of these sequences. 

To assess the forecast accuracy of the GARCH model we need the time series 

to be stationary. One way to make financial time series stationary is to use 

continuously compound rate of return. If we denote the exchange rate at time 

t by tP , we can transform the sequence of exchange rates as follows:  
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where tr  - the continuously compound rate of return at time t. The 

compounded daily return, tr  can be computed simply by taking first difference 

of the natural logarithms of daily prices. 

 The GARCH (n, m) model can be expressed as: 
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where ,)1,0( iidNt   ,ttt r   the parameter i  is the ARCH 

parameter and j is the GARCH parameter and 
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In this paper we use a large sample size (more than 2 300 observations) in 

order to get the best results when estimating standard errors even with 

heteroskedasticity. We will investigate if our large set of financial data can be 

fit to a time series model, and which model will provide the best fit. Figure 1, 

2 and 3 show the continuously compounded daily returns, respectively, from 

XE: (1) (LARI / USD), (2) (USD / EUR), (3) (LARI / EUR). These figures show 

behavior of currency trading return and clearly demonstrate some kind of 

dependence between conditional variances in consecutive moments. In other 

words, there is an ARCH affect and we will examine GARCH model for these 

time series. 

The GARCH model also takes into account volatility clustering and tail 

behavior, which are important characteristics of financial time series. It 

provides an accurate assessment of variances and covariances through its 

ability to model time-varying conditional variances. GARCH allows for 

modeling the serial dependence of the volatility. Due to the conditional 

property of GARCH, the mechanism depends on the observations of the 

immediate past, thus including past variances into explanation of future 
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variances. Financial return volatility data is highly influenced by time 

dependence, which can cause volatility clustering. Time series such as this can 

be parameterized using the Generalized Autoregressive Conditional 

Heteroskedasticity (GARCH) model, which can then be used to forecast 

volatility. 

 

 

 

 

 

 

 
                                                                       

 

 

 

 

 

 

 

 

 

 

 

 
 

All these three figures indicate that there are ARCH effects and there are some 

stationary parts and much more stationary parts. The financial return 

volatility data is highly influenced by time dependence, which, in these cases, 

evidenced in volatility clustering. We use GARCH class models for time series 

such as and parameterize it and forecast these three currencies volatility. 

We could have easily performed a transformation on a non-stationary data set 

to make it stationary. This process is called differencing. The most basic 

method of differencing consists of simply taking the difference between 

consecutive observations.    
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USD/EUR Exchange Rate 
 
We used GARCH (1, 1), GARCH (1, 2), GARCH (2, 1) and GARCH (2, 2) models 

and have obtained following results: 

 

1. GARCH (1, 1): 2

1

2

1

2 9612536.00354899.00011093.0   ttt   

2. GARCH (2, 1): 
2

1

2

2

2

1

2 9660324.00560561.00868201.00010388.0   tttt   

3. GARCH (1, 2): 
2

2

2

1

2

1

2 8124835.01186592.00628202.00020431.0   tttt   

4. GARCH(2,2):
2

2

2

1

2

2

2

1

2 1711424.078835538.00526774.00894452.00012239.0   ttttt   

All these model have the same ACF functions as shown in next figure:  
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Except for two residuals, all others are within 2 standard deviations of the 

sample autocorrelation. GARCH (1, 2) and GARCH (2, 2) do not fit the 

conditions given in (1). For the left, now we have to check normality of these 

models residuals distribution. If we look at their residuals skewness and 

kurtosis, we will see that both are slightly skewed to the right side (0.03), but 

both have about the same kurtosis of about 2.77 which do not give enough 

arguments to reject formality of their residuals.  

 LARI/EUR Exchange Rate    
Let consider the same GARCH models as previous.    

1. GARCH (1, 1): 2

1

2

1

2 9486566.00473765.00019377.0   ttt   

2. GARCH (2, 1): 
2

1

2

2

2

1

2 9487533.00011433.00484219.00019363.0   tttt   

3. GARCH (1, 2): 
2

2

2

1

2

1

2 0239673.09234984.00484657.00019851.0   tttt   

4. GARCH(2,2):      
2

2

2

1

2

2

2

1

2 7466865.016149546.004026644.00444576.00034587.0   ttttt 

 

 

Following figure of ACF Plots of the Residuals is: 
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For all these GARCH models residuals’ skewness are almost the same with 

negative sign (-0.098) and kurtosis – 2.93. Hypothesize that residuals of these 

models follows a normal distribution we can’t reject based on these 

evidences. In this case, only GARCH (1, 1) model is appropriate. 

 

LARI/USD Exchange Rate   

The ACF, as the name implies, shows a self (auto) correlation or relationship 

among the observations. The next Figure 4 gives evidence that shows the 

existence of autocorrelation in this time series.  In other words, there is a 

serial dependence in the variance of the data. A geometrically decaying ACF 

plot would indicate that we should use some possibly a combination of an AR 

and MA model. Notice that the fist lag of the ACF plot is close to zero, indicating 

that our data set does not appear to have much correlation between 

observations. The PACF (see Figure 5) is used to determine the appropriate 

order of a fitted ARIMA data set. The PACF is used to determine the 

appropriate order of a fitted ARIMA data set. We can check this by looking at 

the plot of the partial autocorrelation function (PACF). The most we could 

expect from an ARIMA model would be MA (2) function.  

  
  

 

 

 

 

 

 

 

 

 

 

 
 
 
 

Figure 4   The autocorrelation function 
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Figure 5    The partial autocorrelation function 
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The autocorrelation function of MA (2) model’s residuals is shown in Figure 

6. By viewing the ACF and PACF, the evidence is weak towards finding a good 

fitting AR model for the data. According to the ACF and PACF the data looks 

almost random (see Figure 7) and certainly shows no easily discernible 

patterns. This would support the appearance of the time series plot since the 

plot looks a lot like white noise except for the change in the spread (variation) 

of observations. Such heteroskedasticity would most likely not be evident in 

a truly random data set. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Now we will combine GARCH model with MA (2). The results of this are: 

MA (2) & GARCH (1, 1):    

21 1330251.03245992.001094.0   tttr   

     
2

1

2

1

2 8883365.01258626.0000146.0   ttt   

Figure 6   MA (2): Moving Average Models 
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Figure 7   MA (2): The plot of residuals  
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We don’t represent other models because of their parameters some of which 

is insignificant and their less fitted characteristics to given time series 

patterns.    

Our choices for the best models in above sections are based on assessing the 

residuals of the considered models. For this goal, we looked up the ACF plots 

of residuals, probability plots of the residuals and assessed each model with 

respect to the Ljung – Box statistic. Then, to check the normality assumption 

of the errors, we used the normal probability plots and histograms of the 

fitted GARCH models which showed that their errors are very close to normal 

distribution.  The skewness and kurtosis values did not show exactly 

symmetric matters of errors but tails are not too much heavier than normal 

distribution. In addition, we simulated data from all GARCH models and 

evaluated the simulation data with respect to the given empirical time series. 

The comparison of these characteristics of considered models shows that in 

common, the GARCH (1, 1) model was the best in all cases.   
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