

ECONOMICS AND BUSINESS STUDIES

Artificial Intelligence and Career Development

ANVARI ROYA, PHD

THE UNIVERSITY OF GEORGIA

TBILISI, GEORGIA

ORCID: [0000-0003-2136-8341](https://orcid.org/0000-0003-2136-8341)

ABSTRACT

This study examines the impact of artificial intelligence adoption in recruitment on organizational and individual outcomes, specifically focusing on positive organizational shock and career development. It further investigates the moderating roles of emotional intelligence and family support, and the mediating effect of positive organizational shock on the relationship between artificial intelligence adoption and career development. A quantitative study was conducted in April among 400 human resource practitioners in higher education institutions in Nigeria. The study employed Partial Least Squares for Structural Equation Modelling to analyze the relationships between the constructs. The findings indicate that artificial intelligence adoption in recruitment significantly enhances positive organizational shock, which in turn positively influences career development. Emotional intelligence and family support serve as key moderators, respectively enhancing the positive impact of artificial intelligence adoption and the positive organizational shock. The study also confirms the partial mediating role of positive organizational shock in the relationship between artificial intelligence adoption and career development. Theoretical contributions include the development and validation of a comprehensive framework linking artificial intelligence adoption to organizational and professional outcomes. Practically, the results highlight the importance of integrating emotional intelligence training and family support programs to maximize the benefits of artificial intelligence technologies. The study concludes that artificial intelligence-driven recruitment offers significant potential to transform hiring practices, drive positive organizational change, and boost career development, provided that human factors are also taken into account.

Keywords: Artificial intelligence, recruitment, positive organizational shock, career development, family support

This article is distributed under the terms of the [Creative Commons Attribution-ShareAlike 4.0 International License](https://creativecommons.org/licenses/by-nd/4.0/), which permits non-commercial use and distribution in any medium, provided the original work is properly cited and no modifications or adaptations are made. © 2025 The Author(s). *Caucasus Journal of Social Sciences*.

DOI: <https://doi.org/10.62343/cjss.2025.266>

Received: March 22, 2025; Received in revised form: November 3, 2025; Accepted: November 6, 2025

INTRODUCTION

Artificial intelligence (AI) is reshaping human resource management, particularly in recruitment. It offers new efficiencies and insights, but also brings new challenges and social concerns. The use of AI technologies in recruitment, such as advanced algorithms and data analytics, has been proven to enhance decision-making, improve candidate-position matching, and potentially democratize hiring by reducing human bias. Nonetheless, this technological advancement also raises concerns about privacy, the potential for algorithmic bias, and its effects on job seekers' experiences (Souto-Otero & Brown, 2024). The speed at which technologies such as AI are evolving is both promising and concerning; it raises fundamental questions about how organizations will function in this new paradigm, how employees will advance in their careers, and how it will ultimately affect the future of work itself (Kim, 2024). Although extensive research has examined the operational benefits of AI in recruiting (Munoko et al., 2020) far less attention has been given to its broader organizational effects, particularly positive organizational shocks and their implications for career development (Boswell et al., 2024). Additionally, there is a gap in the study about how individual-level factors, such as emotional intelligence (EI) and family support, can change the relationship between the use of AI in recruiting and how it works. For example, Kassir et al. (2023) and Kelan (2024) have conducted extensive research on how AI influences the hiring process. However, they have not examined how EI and family support might influence employees' responses to AI-driven hiring practices. This suggests that more work must be done researching what role these individual-level factors play in AI adoption in recruiting. In understanding how individuals adapt to technological change, including the use of AI and its implications for career trajectories, EI and family support play a critical role. However, the impact of these factors on how AI is utilized in hiring and the implications for professional advancement have not been sufficiently studied. The lack of a holistic understanding of AI adoption practices in recruiting, particularly within higher education institutions, poses a pressing challenge for colleges and universities and HR plugins. Without an understanding of positive or negative organizational shocks and the Career development shaping in academia, organizations will not be able to optimize the expected benefits of AI for recruitment and provide a tailored response to the challenges it presents. Failure to recognize and appropriately respond to these risks can lead to lost opportunities in developing a fit-for-purpose, flexible, resilient, and skilled academic workforce. It can also have unintended consequences, including poor morale, retention challenges, and disruption to organizational culture and well-being. Other studies have provided some insights into aspects of this study, such as how AI can assist with recruitment and how EI and family support are important for further career growth (Munoko et al., 2020). However, it does not always provide a comprehensive understanding of the critical role of these drivers in the higher education context. Studies might focus only on the technical aspects of implementing AI or on factors affecting a single person. However, they might not examine how AI adoption drives organizational change and alters career development pathways in academia. Therefore, a clear research gap exists, necessitating empirical investigation into how AI adoption in recruitment interacts with EI, family support, and contextual variables

to shape organizational and employee experiences within higher education organizations. By synthesizing these variables and conducting holistic research, scholars can provide actionable insights for HR practitioners and university administrators seeking to navigate the complexities of AI-driven recruitment and foster a supportive and adaptive academic environment, incorporating the applicable criteria that follow.

LITERATURE REVIEW

AI Adoption and Positive Organizational Shock

In the wake of the COVID-19 pandemic, organizations, including higher education institutions, have accelerated the adoption of AI-driven recruitment processes to address challenges posed by remote work and social distancing measures. Higher levels of post-COVID-19 AI adoption in recruitment are associated with improved organizational efficiency, reflected in reduced time-to-hire and decreased administrative burden through automated screening. AI adoption is also anticipated to boost diversity and inclusion initiatives by reducing unconscious bias and creating an even playing field for candidate selection based on qualifications and skills rather than demographic characteristics. Thus, drawing on the literature, we hypothesize that Hypothesis 1: The Higher the AI adoption in recruitment, the greater the positive organizational shock. The hypothesis suggests that institutions with more extensive adoption of AI are more likely to reflect deliberation over ethical considerations, including, but not limited to, algorithmic decision-making, transparency, fairness, and accountability, indicative of responsible AI adoption practices within higher education recruitment processes. In line with Dwivedi et al. Higher education institutions are predicted to adopt AI-driven recruitment processes to enhance organizational efficiency during the post-COVID-19 era (Dwivedi et al., 2020; Saridakis, 2023). An AI-powered applicant tracking system (Kassir et al., 2023) helps accomplish this by using algorithms to analyze candidates and filter them based on their pursuit of key attributes, accelerating the recruitment process while easing the administrative workload. In addition, AI has the potential to facilitate diversity and inclusion by focusing on a candidate's qualifications rather than their demographic characteristics, thereby aligning with the hypothesis's expectation of improved diversity outcomes. Authors such as Tsamados et al. (2021) emphasize certain ethical aspects, while Szymoniak and Kubanek (2024) criticize bias and transparency in AI algorithms. The hypothesis aligns with their views, positing that the greater the level of AI adoption, the higher the level of ethical consideration, as supported by Vinuesa et al. (2020). Furthermore, Wang et al. (2020) and Crawford and Calo (2016) emphasize the importance of transparency and fairness in algorithmic decision-making and support the hypothesis that organizations should prioritize fairness and equity in hiring practices.

AI Adoption and Career Development

In the post-COVID-19 higher education environment, faculty who experience a positive organizational shock are expected to demonstrate higher levels of digital literacy, pedagog-

ical innovation, and collaboration than those who do not. Thus, we propose the following hypothesis: H2: There is a positive relationship between the adoption of AI in recruiting and career development. This hypothesis draws on Nielsen et al.'s (2023) conceptualization of positive organizational shock, which suggests that transformative events, such as the COVID-19 pandemic, can stimulate rapid adaptation, innovation, and organizational renewal. As noted by Braiteh (2024), such shocks can drive innovation, enhance teaching practices, and promote resilience. The hypothesis proposes that instructors who experience positive shocks are more likely to engage in collaborative initiatives, leading to higher levels of collaboration than their colleagues. However, challenges associated with a positive organizational shock, such as the digital divide and anxiety and stress, can hinder the realization of these opportunities, as Soluk et al. (2021) found. In the context of the COVID-19 pandemic, higher education institutions that effectively integrate strategic human resource management (SHRM) practices into their career development strategies will experience greater organizational resilience, employee engagement, and adaptability. Therefore, we can formulate the hypothesis that: H3: A positive organizational shock mediates the relationship between AI adoption in recruiting and career development. Based on the findings of Mer and Virdi (2023), the hypothesis posits that conceptualizing career development post-COVID-19 emphasizes resilience, adaptability, and lifelong learning, which require a strategic approach grounded in SHRM Practices.

EI, adoption of AI in recruitment, and positive organizational shock

In the post-COVID-19 era, higher levels of EI will be positively associated with greater emotional resilience, adaptability, and interpersonal effectiveness. Based on the existing literature, we can formulate the hypothesis that H4: EI moderates the relationship between AI adoption in recruiting and positive organizational shock. This hypothesis is grounded in multidimensional conceptualization of EI, which emphasizes individuals' capacities to perceive, understand, manage, and appropriately express emotions. As proposed by McCrimmon et al., in the face of the unique onslaught of the COVID-19 pandemic, it is postulated that individuals with higher levels of EI will show correspondingly higher levels of the discussed emotional resilience. This empowers them to bounce back from adversity and maintain emotional well-being. Furthermore, Sony and Mekoth (2016) associate higher EI with increased adaptability and flexibility in dynamic environments. This ability to adapt is vital to navigating the pace of change and uncertainty of the post-pandemic world, where traditional norms and practices can no longer be assumed to offer reliable guideposts. Effective communication and relationship management are critical to maintaining productivity and morale in virtual work environments where physical distance and cultural differences can be challenging. Family support, positive organizational shock, and career development. In the post-pandemic period, families facing elevated economic stress, social isolation, caregiving responsibilities, health concerns, and digital inequalities are likely to report lower perceived family support and higher emotional distress than families that encounter fewer such challenges. Based on the existing literature, we formulate the hypothesis that H5: Family support moderates the relationship between positive organizational

shock and career development. The hypothesis is based on the understanding that various challenges exacerbated by the COVID-19 pandemic, such as economic stress, social isolation, caregiving responsibilities, health concerns, and digital inequalities, may negatively impact families' ability to provide and sustain supportive relationships. Neri et al. (2012) and Reynolds et al. (2020) note that economic strain and social isolation can weaken family relationships, restrict access to support services, and exacerbate mental health challenges. Other researchers further observe that ongoing COVID-19-related health concerns may heighten anxiety and fear, placing additional strain on family bonds. Furthermore, the digital inequalities highlighted by Rohwerder and Szyp (2022) may increase feelings of isolation and marginalization within families, as those with limited access to digital resources may struggle to access essential services and social support networks.

METHODS

To determine the sample size, the proportionate sampling technique was used to select 400 samples from the universities. Measurement was conducted using a 5-point Likert scale ranging from 1 (strongly disagree) to 5 (strongly agree)

Sampling Technique

To determine the sample size, the proportionate sampling technique was used to select 400 samples from the universities. First, the proportion of each university's population was found from the overall population.

$$\text{University of Lagos: } \frac{2,782}{8,393} = 0.331$$

$$\text{Lagos State University: } \frac{1,356}{8,393} = 0.161$$

$$\text{Olabisi Onabanjo University: } \frac{909}{8,393} = 0.108$$

$$\text{Covenant University: } \frac{441}{8,393} = 0.053$$

$$\text{Babcock University: } \frac{580}{8,393} = 0.069$$

$$\text{Tai Solarin University of Education: } \frac{572}{8,393} = 0.068$$

$$\text{Federal University of Agriculture, Abeokuta: } \frac{1,393}{8,393} = 0.166$$

$$\text{Pan-Atlantic University: } \frac{360}{8,393} = 0.043$$

Based on the proportion, each percentage was multiplied by 400

University	Location	Population	Sample
University of Lagos	Lagos	2,782	132
Lagos State University	Lagos	1,356	64
Olabisi Onabanjo University	Ogun	909	43
Covenant University	Ogun	441	21
Babcock University	Ogun	580	28
Tai Solarin University of Education	Ogun	572	27
Federal University of Agriculture, Abeokuta	Ogun	1393	67
Pan-Atlantic University	Lagos	360	17
	Total	8,393	400

Variables and Measures

AI Adoption in Recruitment (AIREC): This variable measures the extent to which AI technologies are integrated into the recruitment processes. Items include the usage of AI for candidate screening, interview scheduling, and predictive analytics. Positive Organizational Shock (POSH): This construct captures unexpected positive changes within the organization resulting from AI adoption in recruitment. Items measuring perceptions of improved organizational practices, increased innovation, and enhanced employee engagement were developed by Seibert et al. (2013). Career Development (CD): This variable assesses the perceived improvement in career opportunities and personal growth resulting from AI-driven organizational changes. Items include career advancement, skill development, and job satisfaction. EI is measured to understand its moderating effect on the relationship between AIREC and POSH. The measurement involves assessing self-awareness, self-regulation, motivation, empathy, and social skills using a validated 5-point Likert scale by Law et al. (2004). Family Support: This variable assesses the support individuals receive from their families in balancing work and personal life, and its moderating effect on the relationship between POSH and CD. Items include emotional, financial, and practical support, as developed by King et al. (1995).

RESULTS

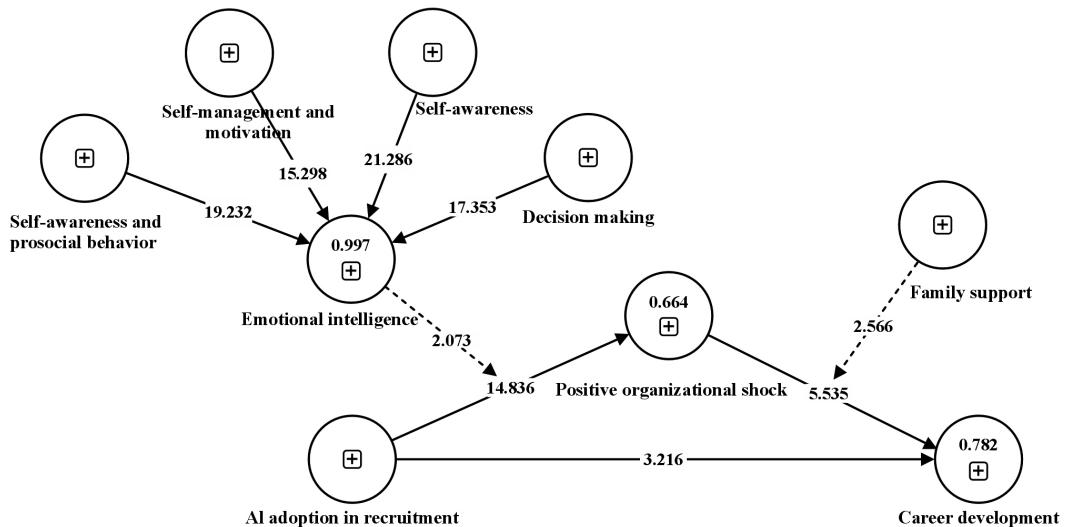
Each construct's internal consistency is assessed using Cronbach's alpha and composite reliability, both of which exceed the acceptable threshold of 0.7. The average variance extracted (AVE) values exceeded 0.5, indicating adequate convergent validity. Both composite reliability and Cronbach's Alpha were higher than 0.7, indicating internal consistency. The AVE values ranged from 0.539 upward, reinforcing evidence of convergent validity. The results of discriminant validity show that all the amounts of the square roots of each construct's AVE were larger than its correlation with other constructs, and, hence, this instrument was found to have discriminant validity. The outer loadings for items within

each construct indicate the strength of each item's relationship with its corresponding construct. All outer loadings are above 0.6, demonstrating strong item-construct relationships. Additionally, the variance inflation factor values are below the threshold of 5, indicating no multicollinearity issues among the items. The analysis confirmed the positive influence of AIREC on POSH ($P = .744$, $p < .01$), POSH on CD ($P = .453$, $p < .01$), and AIREC on CD ($P = .251$, $p < .01$).

The R^2 for Career Development is .782, which is considered a substantial impact, and the R^2 for Positive Organizational Shock (.664) is considered a moderate impact.

H1 (AIREC \rightarrow POSH): The path coefficient for the influence of AIREC on POSH is 0.744, with a significant T-value of 14.836 and a P-value of 0.000. This indicates a strong, significant positive effect, supporting the acceptance of hypothesis H1.

H2 (POSH \rightarrow CD): The path from POSH to career development (CD) has a coefficient of 0.453, a T-value of 5.535, and a P-value of 0.000, suggesting a significant positive influence and resulting in the acceptance of H2.


H3 (AIREC \rightarrow CD): The direct effect of AIREC on CD is also significant with a coefficient of 0.251, a T-value of 3.216, and a P-value of 0.001, thus supporting hypothesis H3.

These results suggest that adopting AI in recruiting has a significant positive impact on positive organizational shocks, which, in turn, significantly improve career development. The direct impact of AI introduction on career development is also noteworthy. H4 (EI x AIREC \rightarrow POSH): EI moderates the relationship between AIREC and POSH with a path coefficient of 0.056, a T-value of 2.073, and a P-value of 0.038, leading to the acceptance of hypothesis H4. H5 (FS x POSH \rightarrow CD): Family support (FS) moderates the effect of POSH on CD as evidenced by a path coefficient of 0.103, a T-value of 2.566, and a P-value of 0.01, thus accepting hypothesis H5. The moderation effects indicate that higher levels of EI can amplify the positive impact of AI adoption on organizational shock. Similarly, FS enhances the positive influence of organizational shock on career development. the indirect effect of AIREC on CD is significant. To assess the role of the mediator, the variance accounted for (VAF) was calculated, which indicates the size of the indirect effect relative to the total effect. The VAF was 57.31%, indicating that POSH plays a partial mediating role in the relationship between AIREC and CD. H6 (AIREC \rightarrow POSH \rightarrow CD): The indirect effect of AIREC on CD through POSH is significant with a path coefficient of 0.337, a T-value of 5.065, and a P-value of 0.000. VAF is 57.31%, indicating a partial mediation role of POSH between AIREC and CD. This finding demonstrates that POSH partially mediates the relationship between AI adoption in recruitment and career development, reinforcing the crucial intermediary role that positive organizational experiences play in enhancing career outcomes. EI x AIREC to POSH: EI moderates the relationship between AIREC and POSH with a significant path coefficient of 0.056 and a t-value of 2.073.

FS x POSH to CD: FS moderates the relationship between POSH and CD, with a path coefficient of 0.103 and a t-value of 2.566.

Indirect Effects:

AIREC to POSH to CD: The indirect effect of AIREC on CD through POSH is significant with a path coefficient of 0.337 and a t-value of 5.065, indicating partial mediation. VAF is 57.31%, suggesting that POSH partially mediates the relationship between AIREC and CD. The model fit indices indicate a good fit. The standardized root mean square residual (SRMR) is 0.072 for the saturated model and 0.082 for the estimated model, both within acceptable limits. The chi-square and NFI values also support the model's fit. Figure 1 shows the results of Bootstrapping

Figure 1. Results of Bootstrapping

DISCUSSION

The significant direct effects identified, such as AIREC's influence on POSH and CD, highlight the profound impact of AI technologies on organizational dynamics and individual career trajectories. This finding aligns with George's (2024) argument that AI-driven recruitment fosters innovative practices and generates unexpected benefits for both organizations and employees. The positive impact of POSH on CD supports assertion that positive organizational experiences foster career growth. The significant moderation effects of EI and FS underscore the importance of these factors in enhancing the outcomes of AI adoption in recruitment. Higher EI amplifies the positive effects of AI adoption on POSH, as individuals with greater EI are better equipped to handle organizational changes (Budhwar et al., 2022). Similarly, FS enhances the positive impact of POSH on CD, suggesting that a supportive family environment plays a crucial role in leveraging positive organizational experiences for career advancement (Park et al., 2023). The partial mediation role of POSH between AIREC and CD, indicated by the significant indirect effect in Table 7, suggests that AI adoption leads to positive organizational experiences, which in turn promote career

development. This finding aligns with Pérez and Sabelis's (2020) view that AI can create more equitable and merit-based career advancement opportunities. The model fit indices in Table 8 indicate that the proposed model provides a good fit to the data. The SRMR values fall within acceptable thresholds, further supporting the validity of the proposed theoretical framework.

This is an excellent model fit, important to make sure the relationships among constructs are represented accurately. One important immediate consequence of AIREC for POSH and professional development is the path coefficient of 0.744 from AIREC to POSH, indicating a strong positive relationship between the two. This means that if an organization adopts AI recruitment processes, it can bring surprising and favorable changes to the service and organization. In addition, the high impact of POSH on CD (path coefficient 0.453) indicates that experiences in the organization can have a substantial effect on individual career lines. This aligns with Bobitan et al. (2024), who highlight that AI technologies offer tailored insights and forecasts that can guide individual and organizational growth approaches and thus enhance career development. The path coefficient on the moderating effect of EI on the relationship between AIRCE and POSH is also substantial, as indicated by a coefficient of 0.056. The finding supports the theory that people with higher EI demonstrate better well-being and are more flexible in adjusting to rapid change in a rapidly changing environment, such as AI in recruiting. According to Di Fabio and Kenny (2019), people with higher EI levels can remain psychologically healthy and adapt successfully to organizational changes. FS also acts as a moderator between POSH and CD, with a T-value of 4.069 and a path coefficient of 0.103. This implies that people with active FS systems are better able to extract the benefits of positive organizational transformations for themselves. This finding is consistent with the views of Prime et al. (2020), who emphasize the crucial role of FS in shaping career aspirations and experiences, especially in the post-pandemic period. The indirect effect of AIREC on CD through POSH, with a significant path coefficient of 0.337, suggests partial mediation. This implies that the positive organizational changes resulting from AI adoption in recruiting partially explain the association between AIREC and CD.

CONCLUSION

The incorporation of AI into the recruiting process is expected to transform conventional hiring practices and generate significant benefits for both organizations and employees. This study aimed to assess the multiple facets of the effect of adopting AI in recruiting, particularly on organizational positive shocks and career development. In addition, the study investigated the moderating roles of emotional intelligence and family support, as well as the mediating effect of positive organizational shock in the relationship between AI adoption and career development. AI adoption in recruitment positively influences organizational shock, suggesting that AI-driven hiring processes can drive favorable organizational change. Because of these changes, employees have greatly enhanced opportunities for professional growth. Key moderating factors were identified: EI and family support. Results indicate that higher EI scores augment the positive impact of AI adoption on positive organizational shocks, and strong family support enhances the positive impact of positive orga-

nizational shocks on career development. The results of the study illustrate the importance of personal and social factors for the successful application of AI technologies. Induction of positive organizational shocks partially mediates AI adoption in recruitment and in career development. This suggests that general organizational experiences have emerged as a key mechanism by which AI-driven recruitment processes can enhance individual career outcomes. Model fit indices confirmed the theoretical structure of the study and provided strong empirical support for the hypothesized links among the constructs, thereby supporting future exploration of the proposed relationships.

Ethics Approval and Conflict of Interest

This study was conducted in accordance with relevant ethical standards. The authors declare that there are no financial, personal, professional, or institutional conflicts of interest that could have influenced the design, conduct, interpretation, or publication of this work.

Financing

The research was carried out without financial support.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

REFERENCES

Bobitan, N., et al. (2024). Shaping tomorrow: Anticipating skills requirements based on the integration of artificial intelligence in business organizations – a foresight analysis using the scenario method. *Electronics*, 13(11), 2198.

Boswell, W. R., Payne, S. C., & Bowman-Callaway, C. E. (2024). Recruiting employed job candidates. In *Essentials of Employee Recruitment* (pp. 171-193). Routledge.

Braiteh, D. K. (2024). Navigating through turbulence: Investigating individual characteristics, well-being, and career outcomes in the face of career shocks. University of Antwerp.

Budhwar, P., et al. (2022). Artificial intelligence—challenges and opportunities for international HRM: A review and research agenda. *The International Journal of Human Resource Management*, 33(6), 1065-1097.

Crawford, K., & Calo, R. (2016). There is a blind spot in AI research. *Nature*, 538(7625), 311-313.

Di Fabio, A., & Kenny, M. E. (2019). Resources for enhancing employee and organizational well-being beyond personality traits: The promise of emotional intelligence and positive relational management. *Personality and Individual Differences*, 151, 109278.

Dwivedi, Y. K., et al. (2020). Impact of COVID-19 pandemic on information management research and practice: Transforming education, work, and life. *International Journal of Information Management*, 55, 102211.

George, A. (2024). Technological transformation in HR: A study of factors driving the adoption of AI recruitment practices. Ghent University.

Kassir, S., et al. (2023). AI for hiring in context: A perspective on overcoming the unique challenges of employment research to mitigate disparate impact. *AI and Ethics*, 3(3), 845-868.

Kelan, E. K. (2024). Algorithmic inclusion: Shaping the predictive algorithms of artificial intelligence in hiring. *Human Resource Management Journal*, 34(3), 694-707.

Kim, S. (2024). Strategic orientation, innovation, and the effects of entrepreneurial support mechanisms in SMEs in South Korea: An application of subject-mechanism-performance congruence model. *Asia Pacific Business Review*, 30(4), 613-639. h

King, L. A., et al. (1995). Family support inventory for workers: A new measure of perceived social support from family members. *Journal of Organizational Behavior*, 16(3), 235-258.

Law, K. S., Wong, C.-S., & Song, L. J. (2004). The construct and criterion validity of emotional intelligence and its potential utility for management studies. *Journal of Applied Psychology*, 89(3), 483. DOI:10.1037/0021-9010.89.3.483.

Mer, A., & Virdi, A. S. (2023). Navigating the paradigm shift in HRM practices through the lens of artificial intelligence: A post-pandemic perspective. In *The Adoption and Effect of Artificial Intelligence on Human Resources Management, Part A* (pp. 123-154).

Munoko, I., Brown-Liburd, H. L., & Vasarhelyi, M. (2020). The ethical implications of using artificial intelligence in auditing. *Journal of Business Ethics*, 167(2), 209-234.

Neri, A. L., et al. (2012). Relationships between gender, age, family conditions, physical and mental health, and social isolation of elderly caregivers. *International Psychogeriatrics*, 24(3), 472-483.

Nielsen, J. A., et al. (2023). Organizational resilience and digital resources: Evidence from responding to exogenous shock by going virtual. *International Journal of Information Management*, 73, 102687.

Park, Y., Kim, J., & Lee, H. (2023). The influences of supportive leadership and family social support on female managers' organizational effectiveness: The mediating effect of positive spillover between work and family. *Behavioral Sciences*, 13(8), 639.

Pérez, A., & Sabelis, I. (2020). Advancing careers through 'merit': A rationalized-sensemaking narrative in hierarchical organizations. *Culture and Organization*, 26(4), 315-332

Prime, H., Wade, M., & Browne, D. T. (2020). Risk and resilience in family well-being during the COVID-19 pandemic. *American Psychologist*, 75(5), 631.

Reynolds, S., et al. (2020). Rapid systematic review: The impact of social isolation and loneliness on the mental health of children and adolescents in the context of COVID-19. *Psychological Trauma: Theory, Research, Practice, and Policy*, 12(S1), S17.

Rohwerder, B., & Szyp, C. (2022). The risks and outcomes of getting help for marginalized people: Navigating access to social assistance in crises.

Saridakis, G. (2023). Organizational performance of entrepreneurial firms: Exploring the link between digitalization, internationalization, and human resource management. In

The Palgrave Encyclopedia of Entrepreneurship (pp. 1-14). Springer.

Seibert, S. E., et al. (2013). Even the best laid plans sometimes go askew: Career self-management processes, career shocks, and the decision to pursue graduate education. *Journal of Applied Psychology*, 98(1).

Szymoniak, S., & Kubanek, M. (2024). Ethical threats associated with the application of artificial intelligence: A comprehensive review. In *Smart Ethics in the Digital World: Proceedings of the ETHICOMP 2024, 21st International Conference on the Ethical and Social Impacts of ICT*. Universidad de La Rioja.

Sony, M., & Mekoth, N. (2016). The relationship between emotional intelligence, frontline employee adaptability, job satisfaction, and job performance. *Journal of Retailing and Consumer Services*, 30, 20-32.

Soluk, J., Kammerlander, N., & De Massis, A. (2021). Exogenous shocks and the adaptive capacity of family firms: Exploring behavioral changes and digital technologies in the COVID-19 pandemic. *R&D Management*, 51(4), 364-380.

Souto-Otero, M., & Brown, P. (2024). The rise of the digital labour market: Characteristics and implications for the study of education, opportunity, and work. *Journal of Education and Work*, 1(16).

Tsamados, A., et al. (2021). The ethics of algorithms: Key problems and solutions. In *Ethics, Governance, and Policies in Artificial Intelligence* (pp. 97-123).

Vinuesa, R., et al. (2020). The role of artificial intelligence in achieving the Sustainable Development Goals. *Nature Communications*, 11(1), 1-10.

Wang, R., Harper, F. M., & Zhu, H. (2020). Factors influencing perceived fairness in algorithmic decision-making: Algorithm outcomes, development procedures, and individual differences. In *Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems*.